Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
1.
Chinese Journal of Surgery ; (12): 650-654, 2012.
Article in Chinese | WPRIM | ID: wpr-245810

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the effect of vacuum sealing drainage (VSD) on variation of oxygen partial pressure (PtO2) and vascularization.</p><p><b>METHODS</b>The 12 cases of rabbit's wound models were undergoing the VSD (vacuum group, n = 6) or conventional therapy (conventional group, n = 6). Variation of PtO2 was measured by oxygen partial pressure admeasuring apparatus, expression of hypoxia inducible factor 1α (HIF-1α) mRNA was measured by real-time fluorescent quantitative PCR, content of vascular endothelial growth factor (VEGF) was measured by ELISA after tissue homogenate in 7 days. Vascular endothelial cell (VEC) and new blood capillary (NBC) of hematoxylin-eosin slice of tissue were counted by using light microscope.</p><p><b>RESULTS</b>Average value of PtO2 of vacuum group was significant lower than conventional group (t = -99.780 to -5.305, P < 0.01). Expression of HIF-1α (30 minutes, 1, 6, 12 hours were 3.11 ± 0.07, 3.68 ± 0.26, 4.16 ± 0.13 and 3.91 ± 0.26 respectively) and content of VEGF (30 minutes, 1, 6, 12 hours were 103.3 ± 2.4, 134.2 ± 9.0, 167.8 ± 3.8 and 232.1 ± 9.5 respectively) of vacuum group were increased after 30 minutes and significant lower than conventional group (t = 13.038 - 80.208, P < 0.01), and both of them were reduced after 24 hours (P < 0.05). Counting numbers of VEC (2.47 ± 0.45 to 4.70 ± 0.38) and NBC (1.33 ± 0.49 to 4.33 ± 0.68) of vacuum group were increased at the same time-point and significant higher than conventional group (t = -0.670 to 16.500, P < 0.05).</p><p><b>CONCLUSIONS</b>PtO2 of wound surface could be reduced significantly by VSD. Expression of HIF-1α and content of VEGF were increased by VSD for enhancing differentiated state of VEC and construction of NBC, which were better for vascularization and wound healing.</p>


Subject(s)
Animals , Female , Male , Rabbits , Disease Models, Animal , Hypoxia-Inducible Factor 1, alpha Subunit , Metabolism , Negative-Pressure Wound Therapy , Neovascularization, Physiologic , Oxygen , Metabolism , Partial Pressure , Vascular Endothelial Growth Factor A , Metabolism , Wounds and Injuries , Metabolism , Pathology , Therapeutics
SELECTION OF CITATIONS
SEARCH DETAIL